
Empty Project
Starting Visual Studio 2019
Created empty project, accepted the default ASP.NET Core 3.1 at the top and the Source: .NET Core 3.1.0

After clicking on Create in the bottom right, the next page shows up

Running the Project
I then changed to run the project from the project mode, not IIS express

Running it pops up the command windows typical of the ASP.NET Core 2.X.X projects, HOWEVER, it now pops up a
web page with Hello World instead of a DOS prompt with Hello World

Create Local Git Repository
From solution folder right click on the solution and click on File menu to add to “Add to Source Control”. This is
better than doing from the git init dos command because this will add the Visual Studio’s gitignore file for you.

Before adding to Git

After Adding to Git

Add to Azure DevOps Project
Create the Azure DevOps Project

Push the Project to Azure DevOps
In the section above for Create Local Git Repository, after adding the local Git you get the below

Click on the # 2 that is circled above to get this screen

Then, click on the Publish Git Repo button in the Azure DevOps section, this will bring you to this window

Click on Advanced to the right of Repository name to show list of projects, select the project name created above,
and leave the default Repository name

Click on Publish Repository to upload the Repository to the selected Azure DevOps project

Before

After

After in Visual Studio

Default Pages
All of the default pages prior to making any changes
Project File
Where it says netcoreapp3.1 that is the moniker

Launch Settings

Program.cs

Startup

namespace cfhp
{
 public class Startup
 {
 // This method gets called by the runtime. Use this method to add services to the container.
 // For more information on how to configure your application, visit
https://go.microsoft.com/fwlink/?LinkID=398940
 public void ConfigureServices(IServiceCollection services)
 {
 }

 // This method gets called by the runtime. Use this method to configure the HTTP request pipeline.
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapGet("/", async context =>
 {
 await context.Response.WriteAsync("Hello from CodeFest!");
 });
 });
 }
 }
}

Appsettings.JSON

Nuget Packages

Using Static Pages
Add MVC to Startup

 ConfigureServices
o Add services.AddControllersWithViews

 Configure
o Add app.UseStaticFiles
o Change the section for app.UseEndpoints (see below)

public class Startup
 {
 // This method gets called by the runtime. Use this method to add services to the
container.
 // For more information on how to configure your application, visit
https://go.microsoft.com/fwlink/?LinkID=398940
 public void ConfigureServices(IServiceCollection services)
 {
 services.AddControllersWithViews();
 }

 // This method gets called by the runtime. Use this method to configure the HTTP
request pipeline.
 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
 {
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseStaticFiles();

 app.UseRouting();

 app.UseEndpoints(endpoints =>
 {
 endpoints.MapControllerRoute(
 name: "default",
 pattern: "{controller=Home}/{action=Index}/{id?}");
 });

 }
 }

Add Controllers and Views Folders

Files are described below

Controllers
Added Controllers folder, then the file. Could not add a controller by right clicking and selecting Controller even
though the controller was empty. Because when you do that it adds a nuget package that adds hundreds of files to
the project. The Nuget package is some kind of codegenerator package.

So I copied a controller from Windows Explorer and pasted the file into the Controllers/Home folder that I made at
the root of the project. I then changed the namespace’s 1st section from other project name to this one.

For Views I copied over from the previous projects as well, the pic above is what it looks like when done.

HomeController.cs

Controller was copied in so changed the namespace’s 1st section accordingly

namespace cfhp.Controllers.Home
{
 public class HomeController: Controller
 {
 public IActionResult Index()
 {
 return View();
 }
 public IActionResult About()
 {
 return View();
 }
 }
}

Views
 Added Views Folder, in Views Folder added

o Home folder, in Home folder, added
 Index.cshtml (copied from another project pasted straight into the solution explorer)

o Shared folder, in Shared folder, added
 _Layout.cshtml (copied from another project pasted straight into the solution explorer0, this

is called from the _ViewStart.cshtml page below)
o _ViewStart.cshtml (copied from another project pasted straight into the solution explorer)
o _ViewImports.cshtml (copied from another project pasted straight into the solution explorer)

Index.cshtml
To add this without using any wizard that then scaffolds, right click on Home folder, left click on Add item …, then
search for text, and then change the name from TextFile.txt to Index.cshtml. Although I probably could have
selected “Razor View” from Add item to get the same thing without scaffolding as well

@{
 ViewData["Title"] = "Home Page";
}

<div class="jumbotron">
 <h1>Minimal Configuration</h1>
</div>
<div class="row">
 <div class="col-md-6">
 <h2>Template with Minimal Configuration</h2>
 <p>
 This is a sample application that just has MVC and Configuration
 </p>
 </div>
 <div class="col-md-6">
 <h2>Documentation</h2>
 <p><a class="btn btn-default" href="https://docs.asp.net/en/latest/data/entity-
framework-6.html">See the documentation »</p>
 </div>
</div>

_Layout.cshtml
This is the main outer page, the other views get loaded from here in the RenderBody method below

The script and css files will get added to the project in a later section. In the includes section below, the ~ represents
“wwwroot” which is the folder created for static folders explained below

<!DOCTYPE html>
<html>
<head>
 <title>Code Fest: @ViewBag.Title</title>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link href="~/node_modules/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
 <nav class="navbar navbar-expand-md navbar-dark bg-dark mb-4">
 Top navbar
 <button class="navbar-toggler" type="button" data-toggle="collapse" data-
target="#navbarCollapse" aria-controls="navbarCollapse" aria-expanded="false" aria-
label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse" id="navbarCollapse">
 <!--Menu Bar-->-->
 <ul class="navbar-nav mr-auto">
 <li class="nav-item active">
 Home <span
class="sr-only">(current)

 <li class="nav-item">
 <a class="nav-link" asp-controller="Persons" asp-
action="Index">Persons

 <li class="nav-item">
 About

 <li class="nav-item">
 Disabled

 <form class="form-inline mt-2 mt-md-0">
 <input class="form-control mr-sm-2" type="text" placeholder="Search" aria-
label="Search">
 <button class="btn btn-outline-success my-2 my-sm-0"
type="submit">Search</button>
 </form>
 </div>
 </nav>

 <section class="container">
 <h2 class="text-center">@ViewBag.Title</h2>
 @RenderBody()
 </section>

 <footer class="container">
 <div class="text-center">Copyright 2018 Code Fest</div>
 </footer>

 <script src="~/node_modules/jquery/dist/jquery.min.js"></script>
 <script src="~/node_modules/popper.js/dist/popper.min.js"></script>
 <script src="~/node_modules/bootstrap/dist/js/bootstrap.min.js"></script>

</body>
</html>

_ViewStart.cshtml
This says to load the _Layout.cshtml file

_ViewImports.cshtml
This says to import the TagHelpers on each and every view page. This is needed to work with the various TagHelpers
such as asp-controller="Home" asp-action="Index" that is in the _Layout.cshtml example above. This makes it
so that clicking on this link takes the user to the Index action of the HomeController.

Tag Helpers enable server-side code to participate in creating and rendering HTML elements in Razor files. For
example, the built-in ImageTagHelper can append a version number to the image name. Whenever the image
changes, the server generates a new unique version for the image, so clients are guaranteed to get the current
image (instead of a stale cached image). There are many built-in Tag Helpers for common tasks - such as creating
forms, links, loading assets and more - and even more available in public GitHub repositories and as NuGet
packages. Tag Helpers are authored in C#, and they target HTML elements based on element name, attribute name,
or parent tag. For example, the built-in LabelTagHelper can target the HTML <label> element when the
LabelTagHelper attributes are applied.

Adding Client Script Files
wwwroot Folder
Add this folder at the root of the project. The wwwroot folder is new in ASP.NET 5 to store all of the static files in
your project. Any files including HTML files, CSS files, image files, and JavaScript files which are sent to the users
browser should be stored inside this folder.

Two Ways of Adding Script Libraries
Libman
From looking at the Pluralsight Video this looks like the best way to add scripts, since you don’t have to worry about
doing it via the Package.json file way (described below). Using Package.json uses NPM to download the entire library
for each tool, like JQuery, or Bootstrap, when you do it this way their entire library gets downloaded into the same
folder of the project file, but because they are static files you can’t do anything with them there, they then have to
be manually added over to the wwwroot folder.

Using Libman, though, the wizard, uses NPM (if that is what you say to use) to download what you say to download
from the CDNs and it lets you determine whereb(such as in the wwwroot folder) as well. After doing it, the wizard
creates a libman.json file that can then be configured manually.

@{
 Layout = "_Layout";
}

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Package.json File
Do this in another project and then copy them back in this project to the wwwroot folder above, so that you only
what is necessary for the project. Do this to use NPM to download the full set of client side scripts for each type.
Added these one by one; it immediately creates a node_modules folder, with a subfolder for each one.

I
Making the wwwroot folder and the Package.json file will create the ItemGroups in the project file that are below in
the 1st box or if copying the script files over from another project instead it looks like the 2nd box below.

Either way, I then changed this section to just what I have in the 3rd box below

{
 "version": "1.0.0",
 "name": "mypackage",
 "private": true,
 "devDependencies": {
 "jquery": "3.3.1",
 "popper.js": "1.14.3",
 "bootstrap": "4.1.2",
 "font-awesome": "4.7.0"
 }
}

1st box - FYI - The Folder tag below does not work when trying to publish as a self-contained application, it will do
nothing for copying anything in that wwwroot folder. Had to change it to Content

2nd Box - If dropping the files in manually from another folder that ran the Package.json file you get this in the proj
file

In either case, I changed to the following. HOWEVER this would cause an error when I added an img folder to the
wwwroot folder. Received the following error: Duplicate 'Content' items were included. The . NET SDK includes
'Content' items from your project directory by default. You can either remove these items from your project file, or
set the 'EnableDefaultContentItems' property to 'false' if you want to explicitly include them in your project file.

I thought I needed this to be able to publish to iis (it would skip the node_module folder), but I found out that the
publish would work for images without it so I tried a new folder called lib, took out the section and it worked. It is as
if the publish command looks for the img and lib folder by default for publishing the wwwroot folder contents

 <ItemGroup>
 <Compile Remove="wwwroot\node_modules**" />
 <Content Remove="wwwroot\node_modules**" />
 <EmbeddedResource Remove="wwwroot\node_modules**" />
 <None Remove="wwwroot\node_modules**" />
 </ItemGroup>

<ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <Content Include="wwwroot***.*" CopyToOutputDirectory="PreserveNewest" />
 </ItemGroup>

 <ItemGroup>
 <Content Include="wwwroot\node_modules\bootstrap\dist\css\bootstrap.min.css" />
 </ItemGroup>

 <ItemGroup>
 <None Include="wwwroot\node_modules\bootstrap\dist\css\bootstrap.min.css.map" />
 <None Include="wwwroot\node_modules\bootstrap\dist\js\bootstrap.min.js" />
 <None Include="wwwroot\node_modules\bootstrap\dist\js\bootstrap.min.js.map" />
 <None Include="wwwroot\node_modules\jquery\dist\jquery.min.js" />
 <None Include="wwwroot\node_modules\jquery\dist\jquery.min.map" />
 <None Include="wwwroot\node_modules\popper.js\dist\popper.min.js" />
 <None Include="wwwroot\node_modules\popper.js\dist\popper.min.js.map" />
 </ItemGroup>

Project File
Added the OS line at the top, this is what the final version looked like

Navigation Bar
ViewBags
ViewBag is a dynamic property and a wrapper around the ViewData. It is a dynamic object and any number of fields
can be added into it dynamically. We can pass both strongly and weekly typed data using ViewBag. It doesn’t require
any typecasting for complex and strongly typed data.

ViewBag is also one of the properties of “ControllerBase” class so when we create a controller, that controller will
automatically inherit the “Controller” abstract class and this “Controller” class inherits “ControllerBase” abstract
class, that’s why we can access this ViewBag property in each controller.

As ViewBag wraps the ViewData so it stores the data into ViewDataDictionary, eg. the Key (string) of ViewData
(ViewData["employee"]) and property of ViewBag (ViewBag.employee) are the aliases of each other. Both will print
the same output.

The reason why ViewBags are discussed in this section for Navigation is because it is changed by the code upon
navigation and can be useful for assignments to then display differently based on what page you are rendering. This
can be done in two ways, at the top of the razor page like in box 1 here or in the controller like box 2, I prefer box 2.

Box 1 – At the top of the razor page

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp3.1</TargetFramework>
 <RuntimeIdentifiers>win10-x64</RuntimeIdentifiers>
 </PropertyGroup>

 <ItemGroup>
 <Content Include="wwwroot***.*" CopyToOutputDirectory="PreserveNewest" />
 </ItemGroup>

</Project>

@{
 ViewData["Title"] = "About Page";
}

Box 2 – In the controller, notice I added Title and NavIndex, I use Title to display what I want to show in the Title tag
of the HTML and I use NavIndex to determine when I want the menu item in the nav bar to be active (show as
highlighted)

Navigation Bar
To make sure the nav bar highlights and stays highlighted when clicking on a menu link set the class of the li tag,
(that holds the anchor tag), to active. This can be set by looking at the ViewBag.NavIndex when loading the page to
see what the value is when loading, and if it is the same value show the “active” attribute (see highlight below).

In the box below when the Home controller loads the Index view, just before the controller loads it via the “return
View();” command, I set the ViewData["NavIndex"] = "one"; I did that for when the controller loads the About
page as well, except that I set that to “two”. I did all this in the controller class (see 2nd box below).

 public class HomeController: Controller
 {
 public IActionResult Index()
 {
 ViewData["Title"] = "Home Page";
 ViewData["NavIndex"] = "one";
 return View();
 }
 public IActionResult About()
 {
 ViewData["Title"] = "About Page";
 ViewData["NavIndex"] = "two";
 return View();
 }
 }

<ul class="navbar-nav mr-auto">

 <li class="nav-item @(ViewBag.NavIndex == "one" ? "active" : "") ">

 Home (current)

 <li class="nav-item @(ViewBag.NavIndex == "two" ? "active" : "") ">

 About

 <li class="nav-item">

 Disabled

Home controller that makes the above work

Publishing
dotnet publish --framework netcoreapp3.1 --output C:\pub\wwwroot --configuration Release --self-contained -r
win10-x64

Do the command above before trying CI/CD to make sure everything copies over.

public class HomeController: Controller
 {
 public IActionResult Index()
 {
 ViewData["Title"] = "Home Page";
 ViewData["NavIndex"] = "one";
 return View();
 }
 public IActionResult About()
 {
 ViewData["Title"] = "About Page";
 ViewData["NavIndex"] = "two";
 return View();
 }
 }

